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2003). The PEAT cores allow us to refine our knowledge of 
temporal and spatial variation in sediment accumulation 
rates resulting from plate movement, varying biologic 
productivity at the equatorial divergence, and carbonate 
preservation (Fig. 6). The shipboard determinations of 
CaCO3 concentrations reveal the carbonate accumulation 
events of Lyle et al. (2005) as sharp carbonate concentration 
fluctuations at ~44 Ma, 41 Ma, 39 Ma, and 36 Ma across 
Sites U1331 through U1334 and ODP Site 1218, followed by a 
sharp transition into much higher carbonate accumulation 
rates from the Eocene into the Oligocene. PEAT shipboard 
results reveal a complex Eocene latitudinal pattern, where 
Sites U1331, U1332, and U1334 track the equatorial CCD 
that well matches the signal observed from ODP Site 1218. 
On the other hand, Site U1333, which is slightly to the north 
of the equatorial zone during the E-O transition, shows 
significantly more carbonate accumulation. 

The early Eocene equatorial CCD was much shallower 
than previously thought. Site U1332, drilled on 50-Ma crust, 
recovered very little carbonate in the basal sediment section, 
in contrast to Site U1331 that is just ~two million years older. 
The estimated equatorial Pacific CCD at ~49 Ma is <3000 m 
paleodepth. Surprisingly, the late Oligocene (23–27 Ma) 
CCD was also found to be 300 m shallower than previously 
estimated. This shallower CCD, at a paleodepth of approxi-
mately 4.5 km, along with associated reduced carbonate  

Fluorescence (XRF) to collect 
high-resolution profiles of 
chemical data for much of the 
time interval. Furthermore, 
quantitative studies of micro-
fossil assemblages will give 
new insights into the changes 
in the equatorial Pacific eco- 
system, including the devel-
opment of a diatom-based 
ecology in the late middle 
Miocene, with significant 
monospecific diatom intervals 
during the transition (Kemp 
and Baldauf, 1993). Finally, 
downhole logging will enable 
refinement of the equatorial 
seismic stratigraphy devel-
oped by Mayer et al. (1985) 
from Deep Sea Drilling  
Project Leg 85. 

One of the key achieve-
ments of the shipboard scien-
tific program was better  
constraint of Cenozoic strati- 
graphy, showing the potential 
to achieve detailed bio-, 
magneto-, and chemostrati-
graphies for the Cenozoic from 
the early Eocene to the present, within an astronomically 
tuned age model. Shipboard results indicate that we can 
achieve this objective based on the observation that even 
decimeter-scale features in the sedimentary record from the 
drilled sites can be correlated over large distances across 
the Pacific sea-floor (Pälike et al., 2005). The PEAT program 
will leave a lasting legacy through detailed correlation of all 
major fossil groups, a detailed magnetostratigraphy with 
over 800 dated reversals, and sedimentary cycles that can be 
correlated across large distances in the Pacific Ocean.

One of the primary objectives of the PEAT program is to 
detail the nature and changes of the CCD throughout the 
Cenozoic in the paleoequatorial Pacific (see text box on 
page 5), with potential links to organic matter deposition 
(Olivarez Lyle and Lyle, 2006). The choice of drilling loca-
tions, specifically targeting positions on the palaeoequator—
to track carbonate preservation during crustal subsidence 
through time (Fig. 2)—followed the initial work on DSDP 
sites by van Andel et al. (1975). The first PEAT reconstruc-
tion of the Cenozoic CCD (Fig. 6) was augmented by addi-
tional results from ODP Leg 199 (Lyle et al., 2005; Rea and 
Lyle, 2005). One of the very significant contributions of 
Leg 199 drilling was the latitudinal mapping of CCD varia-
tions with time. During the Eocene, a generally shallow CCD 
appeared to be deeper outside a zone ±4º from the equator, 
opposite the pattern established during the Neogene (Lyle, 

Figure 7. Oxygen isotope stack of Lisiecki and Raymo (2005) plotted against Ca peak area from XRF 
scanning (a measure of CaCO3 content) at Site U1338. Also plotted are 100-kyr bandpass filter records 
(Gaussian filter with frequency of 0.01 kyr -1 ±0.005). Initial analysis suggests that the 100-kyr period in the 
XRF Ca  area record is a dissolution cycle because it is not present in the shallower sediments recovered 
by ODP Leg 138. There is a strong ‘eccentricity’ cyclicity in the deep Pacific even when polar ice, 
represented by oxygen isotopes, was waxing and waning with a 41-kyr period prior to 1 Ma.
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fluxes to the sea-floor, may be linked to a late Oligocene  
warming before the O/M boundary. The O/M boundary 
interval was first fully recovered in the equatorial Pacific at 
ODP Site 1218 (Fig. 3; see also suppl. Fig. 3 in Pälike et al., 
2006a). Neogene carbonate minima are well documented in 
the Neogene PEAT sites, including a CCD minimum bet-
ween 17 Ma and 18 Ma, a ‘carbonate crash’ interval around 
10 Ma, and a newly delineated CCD minimum at about 4 Ma 
that occurs concurrently with enhanced deposition of diato-
maceous sediments. The design of our drilling locations in 
combination with existing data will allow us to generate a 
three-dimensional view of Cenozoic CCD evolution during 
post-cruise research and to explore the linkage between 
Cenozoic changes in atmospheric CO2 and global warmth.

Post-cruise research will undoubtedly enhance our under-
standing of the strength and timing of the CCD events and 
how they relate to other globally important Earth systems. 
These studies are intended in part to develop the tie between 
these events and orbital insolation changes. Reaching a 
sample resolution high enough to detect orbital insolation 
variations is an important PEAT objective, necessary to 
improve the Cenozoic age model and to confirm that events 
across the equatorial Pacific are synchronous. 

Initial XRF scanning results from the Neogene (Lyle et 
al., unpublished) using the new Texas A&M XRF scanner at 
the IODP Gulf Coast Repository demonstrate how important 
information will result from detailed studies of the PEAT 
sediment (Fig. 7). Shown is a comparison between the 
0–5 Ma XRF Ca peak area in Site U1338 and the Lisiecki  
and Raymo (2005) LR04 benthic oxygen isotope stack. The 
Ca peak area is correlated to the CaCO3 content in the U1338 
sediments. The age model used in this example for U1338 is 
the linear shipboard age model, which has not been further 
tuned. 

The benthic isotope record clearly shows a progression 
from low amplitude 41-kyr obliquity cycles to higher ampli-
tude 41-kyr cycles at 2.7 Ma, and finally to the dominance of 
100-kyr eccentricity cycles by 1 Ma. The development of the 
100-kyr power within the oxygen isotope record is most 
easily observed in the 100-kyr bandpass filtered isotope 
record. For the oxygen isotope record older than 1 Ma, the 
spectral power in the 100-kyr band is only about 0.2 times 
that of the 41-kyr band. The evolution of the benthic isotope 
record may be caused by the development of Northern 
Hemisphere ice sheets or at least increased sensitivity to 

Figure 8. Correlation between the seismic reflection records from DSDP Leg 85 Site 574, IODP Expedition 321 Site U1337 (line 4 of the AMAT-03 
site survey in the PEAT-7 area), and logging data  from Hole U1337A. Correlations between the seismic profile at Site U1337 and the logs are 
based on velocities from VSP experiments and those measured by the velocity log, as well as the correlations to the age of sediments associated 
with the sediment physical property anomalies. The seismic horizons are associated with major fluctuations of carbonate; they appear to be 
chronostratigraphic, as originally suggested by Mayer et al. (1986).
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high latitude insolation prior to the late Pleistocene (Lisiecki 
and Raymo, 2005). 

In contrast, the U1338 Ca record retains spectral power in 
the 100-kyr band throughout the five-million-year record, 
suggesting that there is a linkage between carbonate burial 
and eccentricity (Pälike et al., 2006a). For the interval older 
than 1 Ma, the 100-kyr power in the Ca record is roughly six 
times greater than the 41-kyr power. It is interesting to note 
that records for 0–6 Ma from ODP Leg 138 eastern Pacific 
sites did not record high 100-kyr power (Hagelberg et al., 
1995), but they do find high variability associated with 
obliquity (41 kyr) and precession (23 kyr and 19 kyr). The 
significant level of 100-kyr power in the older, deeper PEAT 
site suggests that dissolution (changes in CO2 storage) may 
play a significant role in the development of the ~100-kyr 
CaCO3 cycle in the central Pacific. Furthermore, it leads to 
the speculation that the abyssal carbon cycle played a role in 
‘looking in’ the glacial cycles to a ~100-kyr rhythm. 

Another major objective of PEAT drilling was to ground-
truth the equatorial Pacific seismic stratigraphy so that seis-
mic reflection records can be used to connect the sediment 
column described at each drill site to form a regional model. 
The PEAT expeditions have collected important new physi-
cal property data so that we can confirm the Mayer et al. 
(1985) seismic stratigraphy and also tie the eastern Pacific 
seismic stratigraphy with that of the central Pacific.

The equatorial Pacific is a classic ‘binary’ sediment 
system, with variable amounts of biogenic calcium carbonate 
and biosiliceous sediment components but very little clay.  
It is also well known that carbonate contents of equatorial 
Pacific sediments can be estimated from the bulk density, 
because carbonates have lower porosity and higher  
grain density than biosiliceous sediments (Mayer, 1991). 
Consequently, physical properties records contain 
meter-scale cyclicity that will ultimately be useful for 
orbital-tuning time scales, which is one of the PEAT 
objectives. Mayer et al. (1985) developed a seismic strati-
graphy for the central Pacific at Site 574 on DSDP Leg 85. 
They noted that major seismic horizons were caused by  
density variations associated with low carbonate intervals. 
They proposed that the seismic horizons were isochrons 
because they were caused by paleoceanographic changes in 
deposition and/or dissolution of calcium carbonate. 

Mayer et al. (1985) did not have logs to measure in situ 
velocities in support of their interpretation. One of the impor-
tant PEAT experiments therefore was to use a combination 
of downhole measurements (vertical seismic profile (VSP)  
and standard logs) with physical properties measurements 
on core. We were able to run the VSP log at Site U1337 (Fig. 8) 
and Site U1338. Figure 8 is an initial comparison between 
the Site 574 seismic stratigraphy of Mayer et al. (1985) and 
the shipboard results for Site U1337. The events correlate in 
age, as would be predicted by Mayer et al. (1985). Site 574 is 

at essentially the same latitude as Site U1337 but is located 
more than 1000 km to the west. The extent of the correlat-
able seismic horizons across the Pacific helps to define the 
magnitude of the paleoceanographic events that caused 
them. Post-cruise studies will focus upon better defining the 
seismic strati-graphy at both Sites U1337 and U1338,  
allowing new tie points for seismic stratigraphic study of the 
equatorial Pacific sediment bulge (Mitchell et al., 2003). 

Outlook for the Future

The initial results from PEAT drilling illustrate the funda-
mental thrusts of the post-cruise science and provide a taste 
of new scientific insights to be reported in the next few years. 
We expect these insights to include a fundamental improve-
ment of the Cenozoic time scale, an exploration of the 
unstable Eocene CCD and its relation to atmospheric CO2,  
a much better understanding of the interactions between  
the carbon cycle and climate, and a better understanding of 
the history of major pelagic nutrient cycles and productivity. 
All of these studies will give important insights on how diffe-
rent Earth systems have interacted in the past and may 
respond in the near future.
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